

Prime Q-Mastermix (2X)

(Real-time PCR with SYBR Green I)

Product Name	Cat. No.	Size
Prime Q-Mastermix (2X)	Q-9200	1.0 ml X 1
	Q-9201	1.0 ml X 3
	Q-9202	1.0 ml X 5
Prime Q-Mastermix (2X, ROX dye 포함)	Q-9210	1.0 ml X 1
	Q-9211	1.0 ml X 3
	Q-9212	1.0 ml X 5

Package information

Q-9200	2X Prime Q-Mastermix (1.0 ml X 1) - with HS Prime Taq DNA Polymerase, reaction buffer, enzyme stabilizer, dNTPs mixture, SYBR Green I and PCR enhancer
Q-9210	2X Prime Q-Mastermix (1.0 ml X 1) - with HS Prime Taq DNA Polymerase, reaction buffer, enzyme stabilizer, dNTPs mixture, SYBR Green I and PCR enhancer 50X ROX dye (25 µM, 50 ½ X 1)

Description

Prime Q-Mastermix (Real-time PCR with SYBR Green I) is a 2X premix reagent for real-time PCR by using SYBR Green I dye. This product is contains the HS Prime Taq DNA Polymerase, which is an enzyme for hot-start PCR.

Also Prime Q-Mastermix (Real-time PCR with SYBR Green I) provide as PCR Premix that may be used with any appropriately designed primer to detect any DNA or cDNA sequence.

Usage Information

- A target template is a DNA, cDNA and all nucleotide
- Consistent results are obtained for amplicon size ranges less than 500 bp.

Protocol

The following 50 µl reaction volume can be used for detection using SYBR Green I real-time PCR.

1. Program the real-time PCR instrument.

2. Prepare the reaction mixture

Components	Volume	
DNase - free water	add up to 50 μ l	
Upstream Primer (10 pmole, 10 μM)	×μl	
Downstream Primer (10 pmole, 10 µM)	×μl	
[50X ROX dye (Option)]*	[x#l]	
Template DNA	×μl	
Prime Q-Mastermix (2X)	25 <i>μ</i> l	

♣ 50X ROX dye

ROX dye can be included in the reaction to normalize the fluorescent reporter signal, for instruments that are compatible with that option, ROX is supplied at a 25 µM concentration. Use the following table to determine the amount of ROX to use with a particular instrument (per 50 µl reaction volume).

Instrument	Amount of ROX	Final ROX
instrument	per 50 ≠ reaction	Concentration
AB 7000, 7300, 7700,		
7900HT, 7900HT Fast,	1.0 (1)()	500 nM
StepOne, and	1.0 <i>⊯</i> (1X)	
StepOnePlus		
AB 7500, QuantStudio		
Stratagene Mx3000P,	0.1 <i>µ</i> ℓ* (0.1X)	50 nM
Mx3005P, and Mx4000		

 \star To accurately pipet 0.1 μ l per reaction, we recommend diluting ROX 1:10 immediately before use and use 1 µl of the dilution.

3. PCR cycling

Chara	Temp. & Time		6.1
Step	Temp.	Time	Cycles
Initial denaturation	95℃	3~5 min	1
Denaturation	95℃	30~60 sec	
Annealing	50~60℃	30~60 sec	30 ~ 45
Extension	72℃	30~60 sec	

Store at -20℃